
TLS/SSL protocol design

Nate Lawson
nate@rootlabs.com

Presented at Cal Poly

Nov. 29, 2007

Overview

• Introduction to SSL/TLS
– Focus on SMTP+SSL

• Design goals and result

• Cryptography primer
– Desired properties

– Primitives for implementing them

• Protocol walkthrough in detail

• Attacks and mitigation

My background

• Root Labs founder
– Design and analyze security systems

– Emphasis on embedded, kernel, and crypto

• Previously, Cryptography Research
– Paul Kocher’s company (author of SSL 3.0)

– Co-designed Blu-ray disc security layer, aka
BD+

• Crypto engineer at Infogard Labs

• FreeBSD committer

Security is hard but rewarding

• Protocols and crypto are susceptible to
very minor mistakes

• Example: SSL timing attacks over the
Internet

• Hard = fun and $
– Breaking and building things is exciting

– Security is a desired skill for any resumé

SSL history

• SSL (Secure Sockets Layer) v2.0 (1994)
– Serious security problems including incomplete MAC
coverage of padding

– Designed by Netscape

• SSL v3.0 (1996)
– Major revision to address security problems

– Paul Kocher + Netscape

• TLS (Transport Layer Security) 1.0 (1999)
– Added new crypto algorithm support

– IETF takes over

• TLS 1.1 (2006)
– Address Vaudenay’s CBC attacks on record layer

– Provide implementation guidance

Layered model

• SSL provides security at the transport
layer (OSI model L4)
– Stream of bytes in, private/untampered
stream of bytes out

– Application logic is unmodified

– Can be adapted to datagram service also
(DTLS)

• Compare to IPSEC
– Mostly used as an L3 protocol

SMTP over SSL

• HTTP, SMTP, POP, IMAP, etc. all have
SSL variants

• Two design choices to add SSL
– Use alternate port since SSL session
establishment differs from original protocol
– SMTPS (TCP port 465 and 587)

– Add protocol-specific message to toggle SSL
mode
– STARTTLS over port 25 (RFC 3207)

• SMTP session over SSL is unchanged

Security goals

• Privacy
– Data within SSL session should not be
recoverable by anyone except the endpoints

• Integrity
– Data in transit should not be modified
without detection except by the endpoints

• Authentication
– No endpoint should be able to masquerade
as another

Attacker capabilities

• Sorted by increasing power

• Normal participant
– Can talk to server that is also talking to other parties

• Passive eavesdropping
– Observe any or all messages sent by other parties

• Active (Man in the Middle)
– Insert or replay old messages

– Modify

– Delete or reorder

• Secure protocols must address all these
threats

Crypto property: privacy

• No one other than the intended
recipient of a message can determine
its contents

• Caveats
– Adversary could have powers of knowing or
choosing plaintext

– Traffic analysis
– Length, latency, unencrypted data like IP or
Ethernet addresses

– Side channel attacks: power consumption, EM,
timing of operations

Crypto property: integrity

• Any change made to a message after it
has been sent will be detected by the
recipient
– Corollary: reordering, replay, insertion, or
deletion of messages will also be detected

• Caveats
– Privacy is not integrity protection

– Error recovery
– You can’t always terminate the session

– Root of trust (shared system?)

Crypto property: authentication

• Messages can be associated with a
given identity with high level of
confidence

• Caveats
– Managing identification

– Lost keys, forgotten passwords, laptop walks
away

– Revocation of old keys and refreshing to new
ones

– Bootstrapping: what is your root of trust?

Security goal implementation

• Privacy
– Data is encrypted with block cipher (e.g.,
AES)

– Cipher key is exchanged via public key
crypto (e.g., RSA)

• Integrity
– Data is protected by a MAC (e.g., SHA1-
HMAC)

• Authentication
– Server and/or client identity is verified via
certificates

Primitive: symmetric crypto

• Block ciphers turn plaintext block into
ciphertext using a secret key
– Recipient inverts (decrypts) block using
same key

• Examples: AES, 3DES, RC5

Primitive: symmetric crypto

• Often requires “chaining” to encrypt
messages longer than a single block

• This does not provide integrity
protection

Primitive: public key crypto

• Data transformed with one key can only
be inverted with the other key
(asymmetric)

• Examples: RSA, Diffie-Hellman, DSA
– And elliptic curve variants

• Can encrypt data to a recipient without
also being able to decrypt it afterward

• Can sign data by encrypting it with one
key and publishing the other

Primitive: public key crypto

Primitive: certificates

• Associate a name with a public key
– Trusted party uses private key to sign the
message “joe.com = 0x09f9…”

– Public key of trusted party came with your
web browser

• Key management still a problem
– Expire certs and explicitly revoke them if a
private key is compromised (CRL)

– Or, check with the trusted party each time
you want to use one (OCSP)

Primitive: message authentication code

• A MAC combines a hash function and
secret key with the data to protect
– Resulting MAC is transmitted with message

– Recipient performs same process and
verifies result matches

• Attacker cannot…
– Modify message without changing its hash

– Forge a new MAC value without knowing the
key

• Examples: SHA1-HMAC, AES CMAC

Primitive: secure PRNG

• Outputs a cryptographically-strong,
pseudo-random stream of data based
on initial seed
– Initial seed needs to have enough entropy

– PRNGs used many places (key generation,
IVs, nonces)

• Examples: /dev/random, Yarrow
– Often based on a hash function like SHA-1

Overview of typical session

ClientHello

ServerHello

Certificate

ClientKeyExchange

ChangeCipherSpec

ChangeCipherSpec

Finished

Finished

ServerHelloDone

ApplicationData ApplicationData

Client Server

Decoding with WireShark

Message: Client/ServerHello

• Initiates connection and specifies
parameters
– Initiator sends list (i.e., CipherSuites) and
responder selects one item from list

– SessionID is used for resuming (explained
later)

Version

RandomData

SessionID

CipherSuites

CompressionMethods

Client/ServerHello

Message: Certificate

• Provides a signed public key value to
the other party
– Almost always the server although clients
can also authenticate with a cert

– Other side must verify information in cert
(i.e., the DN field is myhost.com = IP
address in my TCP connection)

ASN.1Cert

Certificate

Message: ServerHelloDone

• Signifies end of server auth process
– Allows multi-pass authentication handshake

– Otherwise unimportant

• Cert-based auth is single-pass

Message: ClientKeyExchange

• Client sends encrypted premaster
secret to server
– Assumes RSA public key crypto (most
common)

– Server checks ClientVersion matches
highest advertised version

RSA-PubKey-Encrypt(

ClientVersion

PreMasterSecret[48]

)

ClientKeyExchange

Message: ChangeCipherSpec

• Indicates following datagrams will be
encrypted
– Disambiguates case where next message
may be error or encrypted data

• Each side now calculates data
encryption key (K)

Hash(

PreMasterSecret

ClientRandom

ServerRandom

)

MasterSecret computation

Message: Finished

• Indicates all protocol negotiation is
complete and data may be exchanged
– First encrypted message of each party

– Includes hashes of all handshake messages
seen by each side
– Also, magic integers 0x434C4E54 or 0x53525652
(why?)

AES-K-Encrypt(

Magic

MD5(handshake_messages)

SHA1(handshake_messages)

)

Finished

Message: ApplicationData

• Encapsulates encrypted data
– Includes MAC for integrity protection

– Can span multiple TCP packets

AES-CBC-K-Encrypt(

Type

Version

Length

Data

MAC

Padding

PaddingLength

)

ApplicationData

Session resumption

ClientHello

ServerHello

ChangeCipherSpec

ChangeCipherSpec

Finished

Finished

ApplicationData ApplicationData

Client Server

Formal verification of protocol security

• Goal: formal system for finding any
security problems in design
– BAN logic (BAN89)

– Formalized authentication with primitives like “X
said” and “Y believes”

– Model checking (MMS98)
– Build a FSM model of the system and enumerate
states

• Difficult and time consuming but worth
it if your protocol is important

Attack: similarly-named certs

• What if server has valid certificate but a
similar name to another server?
– Example: Microsoft vs. Micr0soft

• Outside the scope of SSL but relevant

• Used all the time with phishing emails
– But few bother with SSL currently

– Yellow lock JPEG on page sufficient

– Now, please enter your PIN

Attack: side channel

• Side effects of handling secure data can
be indirectly observed

• Example: timing attack on server’s
private key [BB03]
– Observe how long the server takes to return
an error when sending invalid
ClientKeyExchange

– Bits of the key can slowly be discovered
… over the Internet

• Tricky problem to be sure you’ve solved
adequately

Conclusions

• SSL provides a well-tested secure
transport layer

• Security protocols require careful
interdependence of primitives
– Privacy

– Integrity protection

– Authentication

• Easy to make mistakes designing
security and crypto in particular

• This stuff is a lot of fun!

Recommended reading

• [TLS06] The Transport Layer Security (TLS) Protocol, Version 1.1.
http://tools.ietf.org/html/rfc4346

• [Resc02] Rescarola, E. Introduction to OpenSSL programming.
http://www.rtfm.com/openssl-examples/

• [WS96] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 Protocol.
1996. http://citeseer.ist.psu.edu/wagner96analysis.html

• [MMS98] John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern. Finite-state
analysis of SSL 3.0. In Seventh USENIX Security Symposium, pages 201 - 216,
1998. http://citeseer.ist.psu.edu/mitchell98finitestate.html

• [BAN90] Burrows, M., Abadi, M., and Needham, R. M. "A Logic of
Authentication", ACM Transactions on Computer Systems, Vol. 8, No. 1, Feb
1990, pp. 18 - 36. A Formal Semantics for Evaluating Cryptographic Protocols p
14. http://citeseer.ist.psu.edu/burrows90logic.htm

• [BB03] D. Boneh and D. Brumley. Remote Timing Attacks are Practical.
Proceedings of the 12th USENIX Security Symposium, August 2003.
http://citeseer.ist.psu.edu/article/boneh03remote.html

Fixing v2.0: downgrade attacks

• Backwards compatibility with insecure
protocol is difficult
– Active attacker could change ServerHello to
advertise v2-only

• Clever solution: put 64 bits of 0x3 in
the RSA padding
– Attacker cannot substitute their own key
without breaking the server cert

– Luckily, SSL v2 only supported RSA key
exchange

