

Who am I?

- Cryptography Research
 - Fix \$1B problems
 - Financial systems
 - Entertainment: Pay TV, high-def optical disc
 - Infrastructure: platform security, networks
 - Specialties
 - · Hardware attacks and countermeasures
 - Analyzing security products
- FreeBSD: ACPI, Storage
- Past companies: ISS, InfoGard Labs, Decru

RSA Conference 2004

Metric: Assurance

- Strength ≠ Assurance
 - Strength: How strong is the system against known attacks?
 - Assurance: What are the odds of falling to an unknown attack?

- Good crypto gives strength (i.e., key length)
- Very few vendors design for assurance
 - Good validation is ~10x the cost of development
 - Complexity is the enemy of assurance
- VM can add assurance

Metric: Cross-Section Cross-section Size of an interface between components Small cross-section (API bottleneck) increases assurance WMs can reduce cross-section of host that is exposed

VM Overview: OS VMs

- UMLinux/User-Mode Linux
 - Linux running on Linux kernel
 - Single vs. multiple host processes
- FreeBSD Jail
 - Partitioning of network and filesystems
 - Single kernel
- Characteristics (UMLinux)
 - Very small cross-section
 - System calls are slow

VM Overview: Hardware VMs

- IBM S/390 VM
 - LPAR hosts OS and apps
- VT: Vanderpool Technology
 - Multiple PC partitions on one CPU
 - Hardware-assisted virtualization support
 - Public details are few
- Characteristics
 - Large/Medium cross-section
 - Very fast

VM Overview: Comparison

RSA Conference 2004

What is a VM good for?

- Security Architect
 - Defense
 - Forensics
 - Debugging
- Attacker
 - Subverting software protection
 - Fault injection
 - Reverse-engineering

VMs for Security:

Overview

- Partitions untrusted code
- Can reduce cross-section
- Cross-platform means less code to validate
- Challenges
 - "Am I in the Matrix?"
 - "What bugs remain in this API?"
 - "How do I renew security after a compromise?"
 - "How can I trust the vendor?"
- Goal is assurance

VMs for Security:

Fallacy of Signed Code

- Common pitfall: "We'll just sign the code."
- Authenticates source of binary, no
- Useless without reduced privilege
 - Guninski and ActiveX

ActiveX Exploit

height=100%>

AM NAME="Extenty" VALUE="7937">

<PARAM NAME="Extenty" VALUE="7937">

<PARAM NAME="ViewMode" VALUE="1">

<PARAM NAME="Offline" VALUE="1">

<PARAM NAME="Silent" VALUE="1">

<PARAM NAME="RegisterAsDropTarget" VALUE="1">

<PARAM NAME="Height" VALUE="500">

<PARAM NAME="AutoArrange" VALUE="1">
<PARAM NAME="NoClientEdge" VALUE="1">

<PARAM NAME="AlignLeft" VALUE="1"> <PARAM NAME="Transparent" VALUE="1"> <PARAM NAME="ViewID"

VALUE="(0057D0E0-3573-11CF-AE69-08002B2E1262)">

.
'<object classid=6#34;clsid:EAB22AC3-30C1-11CF-A7EB0000C05BAE0B6#34;

VALUE=4#34file:///::(450D8FBA-AD25-11D0-98A8-0800361B1103)/../Local%20Settings/Temporary%20Int Content.IE5/index.datf#34;></object/script>setTi t(fun0bject2.document.body.innerHTML)f#34,500);</

VMs for Security Honeypots

- Goal: observe attackers in the wild
- Use a VM to provide a realistic system image
 - Honeyd (Provos)
 - Multiple IP stacks from nmap fingerprints
 - · Connect to attacker to a VM
- Contains damage done
- Allows reliable logging
- Create "interesting" system behavior

HOTE

VMs for Security Integrity/Forensics

- Defender runs system in VM
- After attack, rolls back and replays state
- Identifies extent of damage and repairs
- ReVirt (Dunlap et al)
 - Records interrupts and I/O to recreate state
 - Based on UMLinux
- Potentially requires a lot of storage
- Requires small cross-section!

VMs for Security

Trusted Computing Initiative

- CPU/Chipset
 - Intel, AMD
- VMM, user interface
 - Microsoft NGSCB
- TPM, BIOS, peripherals, etc.
 - TPM is like a smart card attached to the motherboard
- Attempts to answer: "How can I trust my environment?"
 - Partitioning
 - Attestation

VMs for Attack Overview

- Provides full environment to tamper with guest software
 - Access to state
 - Single step
 - Modified environment
- What you can do with it
 - Hijack device drivers
 - Avoid anti-debugger techniques
 - Fault induction
 - Rollback/replay

Using a VM to Violate Assumptions

- Platform is closed
 - "No one can observe my variables"

if (strcmp(passwd, "sEkRiTpw") == 0)

— "The bugs I worry about are in my program" (void) printf(warningMsg);

Platform is reliable

— "It's faster to use the cached value."

if (savedUid == 0)

— "Verify the computed result?!?"

return (RsaComputeSig(buffer, len, d, n));

VMs for Attack Hijacked Sound Card Media player decodes protected music VM provides emulated sound card CD-quality samples written to disk Signed drivers no defense Problem: "Am I in the Matrix?" Sound Device VM Emulated VM

VMs for Attack

Fault Injection

- Reverse engineering takes a lot of time
- Fault injection is often faster
 - Not as difficult as it sounds
 - You don't have to understand it to break it

- Single faulty RSA signature reveals private key (Boneh et al)
- Problem: not verifying the computed result

VMs for Attack

Fault Injection Attack

- VM modified to randomly fail a multiply instruction
 - App calculates signature halves: S' $_{\rm p},$ S $_{\rm q}$
 - Recombines with CRT and returns S'

$$S' = S_q + ((S'_p - S_q) * (q^{-1} \mod p) \mod p) * q$$

— Attacker calculates the private key

$$q = GCD((m - S^e) \mod n, n)$$

Conclusions

- Virtual machines are a powerful tool for...
 - Security Architects
 - Attackers
- VMs are becoming an indispensable element of security designs
- Cross-section must be small to increase assurance
- How will you use a VM?

RS∧ Conference 2004

