
Don’t Tell Joanna
The Virtualized Rootkit Is Dead

Nate Lawson @ Root Labs
Peter Ferrie @ Symantec
Thomas Ptacek @ Matasano

Introduction

What We’re Going To Talk About

★ HVM Malware Recap

★ Nothing Is 100% Undetectable

★ Samsara: A Framework For HVM Malware Detection

★ Conclusion: A Cat And Mouse Game

HVM Malware
A Remedial Course

We’ve Seen This Movie Before

hidesrcthompson
compiler
backdoor

libkvm

amodload

IAT
Rootkit

1998-

SSDT
Rootkit

1994 - 19961984

Back
Orifice

2006-

virtualized

firmware

dark
avenger

‘90s

Hyperjacking vs. Virtualization

hardware

vmm

guest A guest B

hardware

vmm

native OS

hardware

vmmnative OS

vmware
idealized

rootkit hyperjacker

small
footprint

direct guest
hardware io=

Hyperjacker Analogy: WebScarab

web proxy web server

VMM CPU

browser

kernel

Almost all hardware functionality is left
untouched. VMM picks and chooses (via
trap handler) what to manipulate.

Vitriol 1 is less than 2000 lines of C code.

X86 System Hierarchy

hardware

ISA

instructions

microarchitecture

cache sched exec tlb btb

chipset

bus

software

CPU

peripheral

VT

Vitriol: ddz’s HVM Hyperjacker

★ Dino Dai Zovi’s 2006 Matasano Black Hat Talk

ring 0 (OS X) ring -1 (Vitriol) cpu (Core Duo)

vmx_fork()
initialize vmm

rdmsr
vmexit

vmenter

rdmsr 1ch

int 80h
 int

Blue Pill: Joanna’s HVM Rootkit

★ Joanna Rutkowska’s 2006 COSEINC Black Hat Talk

★ Just Like Vitriol, but:
– uses AMD SVM, not Intel VT-x

– Vista, not OS X

– loads self via Vista (beta) swap bug

– implements network IO with debug registers

– loads LWIP stack into the kernel

– apparently implements nested virtual machines

★ Claim: 100% Undetectable Malware

Nothing
is 100% Undetectable

Detecting VMWare Is Easy

★ Unrealistic outdated device hardware
– ISA ethernet controller?

– 440BX chipset?

★ Holes in virtualization
– SIDT

– Microsoft-manufactured motherboard

– Registry keys

– “VMware” in video and SMBIOS strings

★ Guest-to-host communication channels
– VMware: inb/outb to magic port

– VirtualPC: illegal instructions

★ Wide timing variances
– Hard to trap timer reads (RDTSC), accuracy suffers

Cross Section

osx
kernel

kernel
malware

x86
hardware

virtualized
malware

A measure of stealth, quantified by
intrusiveness.

Cross Section for Virtualization

★ Varies by layer chosen for rootkit

★ Dictates complexity of rootkit
– fails to trap and emulate a feature: detectable

– emulation too complex: big target, detectable

★ “Entire x86 hardware platform” is a huge
cross-section

cross section ● noun: amount of the original
system that rootkit must emulate to remain
hidden ● etymology: radar, stealth planes

Fundamental Problem

This instruction:

cpuid

should take 200 cycles, not 5000, is
unprivileged, and should have no impact
on cache, BTB, or TLB.

Three Detection Strategies

★ Strategy 1: Side-Channel Attacks
VM overhead creates detectable “trails” through
microarchitecture that are prohibitively hard to
conceal.

★ Strategy 2: Vantage-Point Attacks
VM cross-section forces it to recognize and emulate
many obscure hardware features.

★ Strategy 3: Vulnerability Analysis
The more features a rootkit implements to hide itself,
the more bugs it exposes.

What Is A Side Channel Attack?

★ Any resource consumed in a logic-dependent way
leaks information. For example:

if (strcmp(guessPassword, realPassword))
return LOGIN_FAILED;

‘83: Tenex
Password (Lampson)

‘95: Timing Breaks
RSA (Kocher)

‘98: DPA Breaks
Smartcards (Kocher)

‘04: Remote Timing
Breaks SSL (Boneh)

‘06: BTB Timing
Breaks RSA
(Aciicmez)

But Real Systems Are Too Noisy!

 BZZZZZT!

★ Astounding: “Opportunities and Limits of Remote
Timing Attacks”; Crosby, Riedi, Wallach

– WAN timing: 15-100 microseconds resolution (!)

– LAN: 100 nanoseconds

★ If noisy, take more samples and average
– Decouples noise from true resource consumption

– Local access = higher resolution

★ We monopolize ring 0 for several microseconds
– Less than an AV scanner

★ Data-dependent side-channels are hard to eliminate.

Finding Side-Channel Attacks

★ How to look for it:
– Enumerate all resources your opponent has to use

• say, “executing instructions”

– Identify how to measure that resource from your vantage point
• Branch target buffer state can be read by timing branches in your own

thread

– Take as many measurements as possible

– Eliminate jitter with Stat 101

★ Secret: identifying whether or not any code (i.e.,
hypervisor) executed much easier than extracting a
key from that code

Vantage Point Attacks

★ Dilemma: either let me talk directly to the hardware,
which will betray you, or emulate the hardware, with
perfect fidelity.

★ HPET: alternative high-precision timers (supercedes
but does not eliminate the RTC).

★ Performance Event Counters: instructions retired (in/
out of VMM), cache misses, branch mispredictions,
model-specific events.

★ GART: scatter-gather memory map for graphics
devices

Finding Vantage Point Attacks

★ Embedded timers (exposed directly, via CSR, or
indirectly via behavior). Force Blue Pill to emulate
every mainstream peripheral.

★ Model-specific MSRs and CSRs (particularly
scattered in sensitive functionality). Not all MSRs
and CSRs are documented.

★ “Bounceable” Memory Access through devices
(DMA rings, etc). Force Blue Pill to emulate every
mainstream peripheral.

Finding Hypervisor Bugs

★ Sources of Bugs
– nested/VTX

– errata

– vtx loading errata

★ Where To Look
– Get all datasheets and errata

– Descriptions give microarchitectural behavior (i.e., priority of faults
in various error cases)

– Focus on items that require a full simulator to emulate correctly

– Or, behavior that can’t be trapped/emulated

– Special credit: “won’t fix” errata

talk about
vmware
interrupt bug

Samsara
a framework for detecting

virtualized malware

Implementation overview

★ three tests implemented
– Instruction and data TLB

– HPET

– VT Errata

★ test framework

★ rantipole: HVM rootkit simulator

★ futures

What’s a TLB?

Translation Lookaside Buffer
–Remembers the translated addresses of
memory you touched
•Like a cache for page tables (Virtual memory
101)

•Not directly visible from software but you can
affect it

–Flush it completely (MOV CR3/CR4)

–Flush an individual page (INVLPG)

–Indirectly by R/W/X from a page

pde+X pde+Y

CR3

pte+N pte+K pte+J

1 0 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 00011 000000000

bffff430h

When a VMEXIT occurs, hypervisor execution and memory
access leave trails through the TLBs

General Approach To Snooping

This sequence:

desync tlb
color memory
cpuid
read memory

should be identical to
this sequence:

desync tlb
color memory
nop
read memory

TLB Snooping

TLB

(0) RAM
(1) PTE
(2) TLB
(3) RAM

1

2

3(a)

3(b)

pte, tlb synced,
“random”

pte, tlb desynced,
RAM colored

post vmexit:
basic VT-x

post vmexit:
AMD SVM

Aside: ASID’s Don’t Help, Joanna

★ “But guest TLB usage can be partitioned with ASID”
– Application Space ID, tag that says which context owns a TLB entry

★ Made for performance, not transparency!

★ Hypervisor still needs to read exit condition from VM

★ VMEXIT trap handler needs to run
– Hence, at least one data and instruction TLB entry will be lost

★ Hypervisor has to now flush TLB manually for guest
– Observable timing difference = side channel

Data TLB Test implementation

★ Allocate N+1 pages

★ Fill N pages with “A”, one page with “B”

★ Touch the pages in order to flush TLB and fill with
those mappings

★ Remap N pages to one page without invalidating the
TLB

★ Walk backwards through all N pages, reading data
– Keep a counter

– Once you see “B”, you’ve flushed the TLB

★ Repeat test but add probe to trap to hypervisor

★ If count varies with trapping instruction, you’re
virtualized

Instructions Have Their Own TLB

★ Instruction TLB test mostly same
– Pattern A = mov eax, 1; ret

– Pattern B = mov eax, 2; ret

– “Reading” pages by call $PAGE, check value in eax afterwards

★ Same design pattern works for other tests

★ Branch target buffer (BTB):
– Modern x86 caches branch targets. Saturate the BTB cache and

evictions will make certain branches take observably longer.

★ Cache invalidation (INVD):
– INVD flushes the cache but discards queued writes. Saturate the

cache, cause VMEXIT, and then INVD out the whole cache;
evictions will make certain writes persistent.

Vantage Point Example: HPET

★ Clock VM exits via the HPET instead of the TSC.

★ Kernel:
– export sysctl “hpet_attach”

– map HPET IO range to requesting processes

★ Userland:
– (1) sample hpet

– (2) sample tsc

– (3) cpuid (or other vmexit)

– (4) elapsed tsc

– (5) elapsed hpet

– (6) reconcile

– (7) repeat

Other Timing Sources

★ The PIT (16 bit counter/interrupt timer)

★ The RTC (battery-backed realtime counter [1 sec
granular] and interrupt timer)

★ The LAPIC (32 bit, device-dependent frequency)

★ The ACPI timer (24 bit PITx3 timer)

★ VGA blanking
– Fun drinking game: “count the exposed embedded timers in

peripherals”.

Bugcheck Example: VMCS Fuzzer

★ VMCS stores host (hypervisor) state, guest (OS X)
state, execution controls, and status.

★ VT-x dox specify 50+ checks on fields, checked in
well-defined model-specific order, generating
different exceptions (GPF, SIGILL, VMLAUNCH error,
etc).

★ Break each check, verify expected exception/signal/
result.

Extending Samsara

★ Plug-in interface for adding new tests
– Kernel or userland

– Tests use configurable probe function

★ Userland support programs
– Query and generate traces

– Analyze results of traces

★ Profiles/”signatures” for well-known hardware

★ Runs on MacOS and FreeBSD
– Easy to port to new archs

Rantipole: An HVM Testbed

★ Rantipole is a (crippled) HVM detection testbed
– only works on OS X

– only works on Core 1 Duo

– only works in native 32 bit mode

– loudly advertises itself

– stripped of any SMP sync code (UP-only)

– no “backdoor” or “malicious” capabilities

– self-destructs in 10 minutes

★ Malware authors: you are better off reading Xen

What Rantipole Does

★ (1) check cpuid, feature msr for VMX

★ (2) allocate vmx and vmcs from IOMallocContiguous

★ (3) initialize vmcs, call vmclear

★ (4) copy segments, stack, cr3 to vmcs host and guest

★ (5) set host/root/hypervisor eip to trap handler

★ (6) set exec controls to pick events we want

★ (7) vmptrld to add vmcs

★ (8) (a) vmlaunch (b) spin

Futures

★ Implement more tests
– VGA blanking interval timer

– BTB

– INVD

– Multi-core cooperating threads

★ Improve simulator to validate tests

★ Port to new archs

★ None of this is really important anyway

tom: BAT
SIGNAL
DIAGRAM
HERE

Conclusion
a cat and mouse game

The Cat And Mouse Process

Yes, you’ve seen it before!

Diagram: “research”, “implement”,
“deploy”, “repeat” (circles, arrows, huge
cliche, boring!):

research---------.
 | |
 \ V
 \ implement ----.
 \ |
 \ V
 \ deploy
 `___________/

Questions are your
way of proving to

Joanna that
you paid attention.

